The Science of Software
and System Design

Stavros Tripakis

Aalto University and UC Berkeley

WODES plenary, May 30, 2018

Bridging the gap between DES
and formal methods

£l syringer

Discrete Event Dynamic Systems
- June 2017, Volume 27, Issue 2, pp 209-260 | Cite as

Supervisory control and reactive synthesis: a comparative
introduction

Authors Authors and affiliations

Riidiger Ehlers, Stéphane Lafortune >, Stavros Tripakis, Moshe Y. Vardi

Article
First Online: 15 March 2016

606 4

Downloads Citations

Abstract

This paper presents an introduction to and a formal connection between synthesis problems for
discrete event systems that have been considered, largely separately, in the two research

communities of supervisory control in control engineering and reactive synthesis in computer

Cyber-physical systems: future

Courtesy https://vimeo.com/bsfilms
Thanks to Christos Cassandras for recommending this video

Cyber-physical systems: present

Autonomous car driving through red light

How do we typically design systems?

. “It was described as a beta release.
e The trial and error approach: | The system will learn over time and get

: : better and that's exactly what it's
¢ — — — . : : : :
Build = test — fix — repeat doing. It will start to feel quite refined

e Problems with this approach: within a couple of months.” — Elon
Musk, Tesla CEO, Nov 2015

* Un-scalable

e Un-economic Tesla driver dies in first fatal crash while
using autopilot mode June 2016

e Un-safe

The autopilot sensors on the Model S failed to distinguish a white tractor-trailer
crossing the highway against a bright sky

* Yet common...
Are we the drivers supposed
to debug the autopilot?

How to design better systems?
How to better design systems?

Tripakis

s system design an art or a science?

e Science = knowledge that helps us make predictions

* We can make fairly good predictions about several
systems we build (buildings, bridges, satellites, ...)

 What can we say about cyber-physical systems?

 What predictions can we make about software?
(term used broadly)

Path of Voyager 1

Tripakis

Elements of the science of system design
(“model-based design”)

Simulink, UML, SysML, HDLs, System(, ...

Modeing an Aucmatic Transmission Controller

Describe the system

that we want
e

Simulation, verification, ...

Be sure that this
is what we want

~~

Implement the system
Automatically
Correct-by-construction

Tripakis

This talk: some recent work

 The Refinement Calculus of Reactive Systems

e Synthesis of platform mappings with applications to
security

e (Time permitting) Combining controller synthesis
and learning

* or Why model-based design is not the end of the story

The Refinement Calculus of
Reactive Systems (RCRS)

Joint work with Viorel Preoteasa and lulia Dragomir (Aalto)
Sponsors: Academy of Finland and NSF CPS Breakthrough

Motivation

e Compositional formal reasoning for CPS — Simulink:

3)

Jn

Pedal Angle (deg)

1000

Engine Spead {rpm)

edal angle
[| I~ ~ peas e
~
~ ~
S Padal Angle
Enable ~N -~
-~
~
-~
~
-~
1 ~
case [1] l w2 s_out
2 ul case [2]; i by el v
spec_num out1
air_by_fuel_ref
default: [—»—]
Terminator over(under)sheot
Swilch Case
case: {}
air_by_fuel
@D \
air_by_fuel air_by_fuel_ref .
RMS error n
air_by_fuel_ref
air_by_fuel
Scope
T — -~ - J I — —
-
T spec_num sSpec_num s out fb———— P :)
= lodal3 -
-~ - s_out
= = — _| spec_num
-
= dauble air_by_fuel_ref
—
-
air_by_fuel_ref == o _
Calcuate Error

YyYY¥Y T Yyvwy

Monitor

10

Distinguished Artifact Award
TACAS 2018

RCRS = theory + toolset

Oaokioms
ftronglaton strakagy, atc.)

Translater
——4Hhuwmuhun-—*

Formal maded
of the diagram

RCRS theory and component library

!

—3

Fermal Analyzer
ibulk on oo of
baballe thaovsm
PRIy

——5 iworoathliy detasz
—3 intarmal variabis slimination
—) auto genarated bop-evel contract
) substiRutabillty checking

—p Pyithon cods ganeration

Downloadable from http://rcrs.cs.aalto.fi/

11

RCRS theory: contract-based design

 Relational interfaces [EMSOFT’09, ACM TOPLAS’11]

— Symbolic, synchronous version of interface automata
[Alfaro, Henzinger]

— Open, non-deterministic, non-input-complete systems
(this is crucial for static analysis)

— Semantic foundation: relations

— Limited to safety properties

 Refinement calculus of reactive systems [EMSOFT’14]
— Richer semantics: predicate and property transformers
— Can handle both safety and liveness properties

— Entirely formalized in Isabelle theorem prover - 27k lines of
Isabelle code

12

Some of the things RCRS can do

e Design-by-contract
* Incremental design with refinement

e Compositional verification

Static (“compile-time”) analysis

no sqrt of <0

Tivcttie Angle. ?
theta (deg) fithets) /
CO—» 2.821-0.05231° + 0.10299"u"u - o.ooooa-u-/ru —
2 > x
Manifold Pressure, —»| = ol prati
Pm (bar) . |pratio 7
min > 2°sqrt(u - u*u) —D—\-
>+ > NED'
(3 } ‘ X — : 1 g Throttle Flow
Atmos pher ic Pressure, =0 - nugn(gg).
Pa (bar) SonicFlow
no division by O
5 y double — | double
flow dir ection

Based on Simulink Demo, Copyright 1990-2010 The MathWorks, Inc.
Tripak

Simulink square root modeled with

RCRS contracts

uy./u

Sqrt

double -> double

Simulink type

u20—>x:\m

RCRS contract:
input-receptive

UZOAX:JU

RCRS contract:
non-input-receptive 15

Catching incompatibilities statically

1 % > ‘/T >
Constant Sqrt Scope

u=-1 UZO/\X:\/U

caught by taking the conjunction of the two formulas
and checking satisfiability

Tripakis

Inferring new contracts automatically

V

>

‘m
.

é:
-1

““““ Talalilels
= Ld e LS

Scope

17

Library of Simulink basic blocks in RCRS

definition "Id = [: x ~y . vy =x :]"
definition "Add = [: (x, y) ~z . z=x+y :]"

definition "Constant ¢ = [: x::unit ~y . y =c¢c :]"

definition "UnitDelay = [: (x,s) ~ (y,s’) . y=s A s’ =x :]"
definition "Sqrt = {. x . x >0 .} o [:x~ 7y .7 =+x 1"
definition "NonDetSqrt = {. x . x >0 .} o [t x~y .y >0 :]"
definition "ReceptiveSqrt = [x ~y . x > 0 = y = /x :]"

definition "Integrator dt = [: (x,s) ~ (y,s’). y=s A s’=s+x*xdt :]"

18

Translation of (arbitrary) Simulink diagrams

e Formal, modular, compositional translation: a
non-trivial problem

=

[» (Constant || Constantl) o Div o Scope ...

e Algebra of block diagrams:

aﬂ y o Defining

S, = A H= m
g2l A Lg |2 ri] A |y feedback:
=i 5 it non-trivial
serial E ______________________ : feedback [LICS’16]
19

parallel

Incremental design with refinement

Suppose we have designed and verified
this “steer-by-wire” system:

velv

min ’Vmax]

Incremental design with refinement

Incremental design with refinement

How to ensure properties are preserved
n (substitutability)?

velv

min ’Vmax]

Q—>A—>z—>c

Tripakis 22

Incremental design with refinement

In RCRS it suffices to check that L=B:Z reflnes B
(local check)

velv

min ’Vmax]

-
/’ ~\

9y,

\\
~ ,/
\N ”
N~ —
N o

N
@)

- m————TT T TS =—a -~
-~ Sso
s ~
s A S
7 \

/
/4
\

[
Tripakis .

Does it work for real-world systems?

e (Case study: Fuel Control System automotive benchmark
e Made publicly available by Toyota on CPS-VO website
e Simulink model: 3-level hierarchy, 104 blocks

e Translator produces a 1660-line long RCRS theory (translation
time negligible)
e Automatic static analysis / contract inference / simplification:

<1 minute

Sample subsystem
of the FCS model

10

Synthesis of platform mappings
with applications to security

Joint work with Eunsuk Kang (NSF ExCAPE project),
and Stephane Lafortune (UMichigan)

Sponsors: NSF Expeditions ExCAPE

Thanks to Eunsuk Kang for several slides 25

Motivation: security

Third-Party Authentication

" signUp/Signin

Sign in using your account with

Facebook G008le
twitker YaHOO!
I~ OpeniD Linked[f}

From a Save energy 123 account...

® Signin | O Create an account

OAuth: Widely adapted, support from major vendors
Well-scrutinized & formally checked

26

Motivation: security

CRITICAL HOLES IN OAUTH, OPENID COU
REDIRECT USERS

Chris Brook

UPDATE — A serious vulnerability in the OAuth and Openl|D protocols could lead to
complications for those who use the services to log in to websites like Facebook,

Google, LinkedIn, Yahoo, and Microsoft among many others.

Study of OAuth providers [Sun & Beznosov, CCS12]
Majority vulnerable (Google, Facebook,...)

The heart of the problem

Application Desi - : :
bpiication Design Designers think at high-level

Protocols, APIs, workflows,
use cases, etc.,

lgnore irrelevant,details
‘ Deployment

Attacks may exploit details
absent at high-level
Unwanted features

Unknown environment
Hidden interface/entry points

28

Platform

Our approach: modular modeling with
Application Design mappmgs

mapping composition
operator

— | P HmQ

Examples of decisions captured by mappings:

e should a certain protocol message be
implemented as an HTTP request? implementation

e with cookies to store secret values? model

e with query parameters?

Possible applications beyond security.
-
Platform

29

Example: abstract channel & public channel

P
writeBob(msg) S = “Only Bob can
learn Alice’s secret”
Can we implement abstract
... deS|gn P on platform Q and
Q l preserve property S?

, [ReceiverXJ
encWirite(

keyX
[} msg ke
Sender g.key)

ReceiverYJ h

keyY

Implementation decisions as mappings

m:L—>L

Lp Lo
WIteBOD(PUDBIIC) errrrerrsrrsrrsrinsnnnrery, €NCWIite(public,none)
WritEBOb(SecrEt) ...-., encWrite(Secret’none)
writeEve(public) = encWrite(public,keyX)
writeEve(secret) ™ encWrite(secret, keyX)

encWrite(public,keyY)
encWrite(secret,keyY)

Correct and incorrect mappings

Mmai.

writeBob(secret) - encWrite(secret,none)

writeBob(public) - encWrite(public,none) | No messages encrypted
writeEve(secret) - encWrite(secret,none) |Eve can read Alice’s secret!

writeEve(public) - encWrite(public,none)

Mmay.

writeBob(secret) - encWrite(secret, keyX)

writeBob(public) - encWrite(public,keyX) Encrypt all messages
writeEve(secret) - encWrite(secret, keyX) (safe but inefficient)

writeEve(public) - encWrite(public,keyX)

mas.

writeBob(secret) - encWrite(secret, keyX)

writeBob(public) - encWrite(public,none) Public messages
writeEve(secret) - encWrite(secret, keyX) need no encryption

writeEve(public) - encWrite(public,none)

Verification and synthesis problems on
MappIinNgs

e Verification: given application model P,
platform model Q, mapping m, and some

specification ¢, check that the system
P ||,,, Q satisfies ¢.

e Synthesis: given P,) and ¢, find mapping m,
such that P ||, Q satisfies ¢.

Contributions

e Algorithm and tool for automated mapping
synthesis:

— Counter-example guided symbolic search over
possible candidate mappings

e Real-world case studies: OAuth 2.0 and 1.0

— Tool able to automatically synthesize correct
mappings for both OAuth 2.0 and 1.0

— Synthesized mappings describe mitigations to well-
known attacks (e.g., session swapping, covert redirect,
session fixation)

— Several 1000s LOC of application and platform
models: OAuth, HTTP server, HTTP browser, ...

From Model-based to Data-driven
and Model-based Design

B rave n eW WO rl d Tempe, Arizona, March 18, 2018
_ _

e “Software designers face a basic s cansarer .
tradeoff [...]. If the software is Report: Software bug led to death in
programmed to be too cautious, Uber’s self-driving crash
the ride will be slow and jerky [e ine erers rsoftwarereporay decid toguore e
[...]. Tuning the software in the S
opposite direction will produce
a smooth ride most of the
time—but at the risk that the
software will occasionally ignore
a real object. [...] that's what
happened in Tempe in March—
and unfortunately the "real
object” was a human being.”

e "There's a reason Uber would
tune its system to be less
cautious about objects around
the car, [...] Itis trying to
develop a self-driving car that is
comfortable to ride in."

Tripakis 36

New challenges and opportunities

e Can Al benefit from system design, and how?

e Can system design benefit from Al, and how?

Can Al benefit from system design?

* Yes.
e Al software is untestable.

e Formal verification of Al
RAND software is needed.

CORPORATION

Driving to Safety

How Many Miles of Driving Would It Take to Demonstrate

Autonomous Vehicle Reliability?

Nidhi Kalra, Susan M. Paddock

. n the United States, roughly 32,000 people are killed and
Key findi ngs more than two million inj ured in crashes every year (Bureau

of Transportation Statistics, 2015). U.S. motor vchicle

e Autonomous vehicles would have fo be driven hundreds . .
crashes as a whole can pose economic and social costs of more

of millions of miles and sometimes hundreds of billions than $800 billion in a single year (Blincoe et al., 2015). And,

of miles to demonstrate their reliability in terms of fatali-
more than 90 percent of crashes are caused by human errors

fies and injuries. (National Highway Trafhic Safcry Administration, 2015)—such

as driving too fast and misjudging other drivers’ behaviors, as 38

e Under even aggressive festing assumptions, existing

Aoels wouldiiake lons and semetimes hundreds o years well as alcohol impairment, distraction, and fatiguc.

Can system design benefit from Al?

* Yes.

e Data-driven and Model-based Design (DMD)

Data-c

Desigr

riven and Mode

— motivation an

e Combine the best of both worlds:
e Trial-and-error
e Model-based design

nased

goals

e Leverage advances in Al (machine learning, data
science, ...) to improve system design methods.

e Complement existing Al methods by developing
new techniques developed specifically for system

design.

Example: combining controller
synthesis and learning

Joint work with Rajeev Alur, Christos Stergiou et al (UPenn)
Sponsors: NSF Expeditions ExCAPE

41

Motivation: distributed protocols

Can we synthesize
such protocols
COMMUNICATIONS automatically? -

OF THE

ACM p—

HOME | CURRENTISSUE | NEWS | BLOGS | OPFINION | RESEARCH PRACTICE | CAREERS ARCHIVE VIDEOS

 Notoriously hard to get right

Home / Magazine Archive / April 2015 (Vol. 58, No. 4) / How Amazon Web Services Uses Formal Methods / Full Text

CONTRIBUTED ARTICLES . (to model and Ver|fy
How Amazon Web Services Uses Formal Methods | istributed protocols)

By Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, Michael Deardeuff

Communications of the ACM, Vol. 58 No. 4, Pages 66-73 Key I n S I g h ts

10.1145/2699417
Comments (1)

- — B Formal methods find bugs in system
viewas: B [& B B sHARE: & @ 81 [k designs that cannot be found through

any other technique we know of.

Since 2011, engineers at Amazon Web Services (AWS) have use| m Formal methods are surp risingl'f feasible
formal specification and model checking to help solve difficult for mainstream software development
design problems in critical systems. Here, we describe our and give good return on investment.
motivation and experience, what has worked well in our proble
domain, and what has not. When discussing personal experien
we refer to the authors by their initials.

B At Amazon, formal methods are routinely
applied to the design of complex

real-world software, including public
At AWS we strive to build services that are simple for customer cloud services.

to use. External simplicity is built on a hidden substrate of

nsnrlaer Aicbeilatad cercbassans Crinlh cmssaaslaer Sndbaenala asea

e

Verification and synthesis in a nutshell

e Verification:
1. Design system “by hand”: §
2. State system requirements: ¢
3. Check: does S satisfy ¢ ?

e Synthesis (ideally):
1. State system requirements: ¢

2. Generate automatically system S that satisfies
¢ by construction.

State of the art synthesis

 From formal specs to discrete controllers:

#Assumptions

(gl_healthy & gr_healthy & al_healthy & ar_healthy) !
[1(gl_healthy | gr_healthy | al_healthy | ar_healthy) S
[1(*gl_healthy -> X('gl_healthy))
[1('gr_healthy -> X(!gr_healthy))
[1(tal_healthy -> X('al_healthy))
[1(tar_healthy -> X('ar_healthy))

#Guarantees i S 7 R Wy =

('cl & 'c2 & 1c3 & 'c4 & !1c5 & 1c6 & Ic7 & !c8 & !c9 & IclO & e J e L s b e

Icll & !cl2 & !cl13) A s R _ o b
[(X(c7) & X(c8) & X(cll) & X(cl2) & X(cl3)) M o Sy I o

O (c2 & c3)) e oy, TT
[O0('(cl & c5 & (al_healthy | ar_healthy))) T e ||
[1('(c4 & c6 & (al_healthy | ar_healthy)))
[1((X(gl_healthy) & X(gr_healthy)) -> X(!c2) & X(1c3) & o S s
X(1c9) & X('cl0)) 2 R . S
[O(X(tgl_healthy) & X(Igr_healthy)) -> X(c9) & X(cl0)) S

Specification (temporal logic formulas) Controller (state machine)

* Limitations:
— Scalability (writing full specs & synthesizing from them)
— Not applicable to distributed protocols (undecidable)

Tripakis 44

Synthesis of Distributed Protocols from

Scenarios and Requirements

e |dea: combine requirements + example scenarios

Sender Receiv Sender Rece Sender Recei Sender Rece:
: : end ! : send : end_ :
. : : -« 7 : ! ,) :
ond : - H 0 : d V2 :
— T~ el : L deli : s del (",
: S deliv : T : 0 : a > ® ceco @
: a : d : R . d ° o900
—" ., — end / / . &2 ece @
b N i i . -_ : . .
. . - : E : end : :
nd_ : ~ T el] :
-«_ 7 : : : : ay e : :
s 1 . timeout . : : /'-> meout -
\ —_ : : : . .
: G : :
: * o deli
. ay h
nd_ .
Do :
del — .,
: - de
. ao

Synthesis tool

example scenarios formal requirements

(safety, liveness,

These are typically deadlock-freedom, ...)

not complete specs!

synthesized
protocol
(state machines)

45

Scenarios: message sequence charts

e Describe what the protocol must do in some cases
* |ntuitive language = good for the designer
 Only a few scenarios required (1-10)

Sender Receiver Sender Receiver Sender Receiver Sender Receiver
. . send - : send_ : send

send : -« 4 : D : «-_ :

4-‘])0* \ \ \

. deliver . . .
. . . deliver . . . deliver
: * deliver : ao P : a0 -> . ao >
. ao__m> / / . /
/ ond : send<_:) : ‘ .
- P : pl\" send<_: :

send<_; Y : \ . . * deliver : i .
’ 1 : timeout : : . " :-> timeout :\:
\ — Yz : : .

—l.

2

- deliver
"
Send . Send<-s
-~ Do a
ao

20 . send . : ;
: : o e P—
deliver . . : : : . deliver
> . .

an deliver ‘ :
deliver tumeout
> —

\
\/

ay

e
/
\

send -

. -
o . - deliver <=

/ : ao - ‘100* /

v v / L deliver : :

Scenario 1 Scenario 2 Scenario 3 Scenario 4

(nominal) (msg loss) (ack loss) (delay)

Synthesis becomes a completion problem

Incomplete automata learned from first scenario:

deliver!
send O\a({? p67 : N‘
ABP (j//// ABP
—> .
Sender)/Q ay)/Q Receiver
atl?\@ p1! send! \Q deliver! C p17?

O

Automatically completed automata:

Do ay?
O/\ delwer' '
send! '
ABP Q/ timeout? ABP
—> , 7
Sender ap? Receiver
a’l?\g\/) send! deliver! :

timeout?

Results

e Able to synthesize the distributed Alternating Bit Protocol (ABP)
and other simple finite-state protocols (cache coherence,
consensus, ...) fully automatically [HVC’14, ACM SIGACT’17].

 Towards industrial-level protocols described as extended state

machines [CAV’15].

Gwait (Pm, Po, flag, turn)

waltingy, -
requestp, !

flag[Pm| := false gerit (Pm, Po, flag, turn)
criticalpy!

Critical section

flag[Po] A turn = Po

waltingp, !
requestp, !
flag[Pm] := true turn := Po

L)

ﬂdg[Pm] — falge ﬂﬂag[PO] V turn = Pm

criticalpy!

Critical section

48

Algorithmic technique: counter-example guided
completion of (extended) state machines

e Completion of incomplete machines: find missing transitions,
guards, assignments, etc.

f _ ’*_" Constraints @
Add input, on unknown functions
determinism, and
SYMIMELTY CONSETAINES |gruvurrsurersseessssssrsnsssssessanserns e Environment
L) Ar Aoy iy ESM-S F
Yes?
l Interpretation . -
for unknown Y = ¥ =
SOIZG ConSt?Iﬁ,S: S functions Instantiate protocol Model check
E e. ot : with interpretation protocol
unknown functions L)
No?
No completion .
(s) [Analyze errors & Yes?
. Errors?
L update constraints
No?

Correct
Fig. 3: Completion Algorithm. [Interpreta-tion]

Combining synthesis with learning

e Synthesis: given specification ¢, find system S,
suchthat$§ E ¢

* Learning: given set of examples E, find system §,
such that S is consistent with E and “generalizes
well” ...

e Synthesis from spec + examples: given set of
examples E and specification ¢, find system §,
such that S is consistent with £ and S E ¢

— Key advantage: ¢ guides the generalization!

CONCLUSIONS

The science of system design

 Theory and tools that help us make better
predictions about the systems we build.

* Formal modeling, verification, synthesis, ...
— A.k.a. “formal methods”.

* Broad spectrum of interesting research
problems (theory and practice).

— Increasingly mature for education.
* Increasingly popular in the industry.
* New opportunities: data, examples, learning!

52

Thank you

Questions?

53

